

BLUEROLL

The Bonfiglioli platform for mobile robots and logistic systems

We engineer dreams

BLUEROLL

CONTENTS

BLUEROLL	4
The highest level of precision, efficiency and energy optimization	
Fully committed to the efficiency of customers' system over its life cycle	5
THE BLUEROLL PLATFORM	6
MODULAR AND CUSTOMER-SPECIFIC AGV SOLUTIONS	7
BLUEROLL BASIC	8
BLUEROLL ADVANCED	10
BLUEROLL COMPACT: THE TOP-LEVEL INTEGRATION	12
OTHER BONFIGLIOLI SOLUTIONS FOR AGVS	13
TECHNICAL DATA	14
CLOBAL DDESENCE	1Ω

BLUEROLL

THE HIGHEST LEVEL OF PRECISION, EFFICIENCY AND ENERGY OPTIMIZATION

With more than 20 years of experience in creating tailored and forward-thinking motion control systems, Bonfiglioli has proven being a reliable partner as **one-stop shop for mechatronic applications** in industrial automation.

Bonfiglioli engineering specialists work side by side with customers to develop dedicated integrated solutions, covering the entire motion drive train according to an **Industry 4.0 approach**.

Thanks to the extensive know-how and the long-term collaboration with key customers, our two centers of excellence, located in Italy and Germany, develop **breakthrough mechatronic innovations**, including low backlash planetary gearboxes, servomotors, open and closed loop inverters, servo drives and energy regenerative units.

This, combined with a comprehensive range of Professional Services, enables us to respond to customers' requests by:

- · providing user friendly, plug & play solutions
- increasing applications' efficiency and productivity
- · designing flexible, modular solutions targeted to a wide range of applications
- granting access to real time data for diagnostic, maintenance and predictive analytics

FULLY COMMITTED TO THE SUCCESS OF OUR CUSTOMERS' SYSTEM OVER ITS LIFE CYCLE

Bonfiglioli technical sales experts support customers with a proactive, flexible and dedicated approach throughout the system's entire life cycle.

- **Assessment and recommendation**: our team provides support starting from the very early stage of the project by assessing the requirements and developing a targeted analysis of the application, guiding customers in the choice of the most suitable components for their drive solution.
- Engineering and planning: our experts work with customers to co-engineer their application, offering consultancy in sizing, fine tuning and selecting the optimized drive train, always considering life cycle cost optimization.
- **Installation and commissioning**: we partner with our customers to ensure a quick, cost-effective and successful installation, optimizing the benefits and functions of their drive technology.
- **Retrofit and upgrade**: we update customers' machines with state-of-the-art technology to ensure constant levels of productivity, reliability and performance.
- Maintenance and repair: we work side by side with customers to avoid failures, reduce down times and ensure the best system operation.

THE BLUEROLL PLATFORM

MODULAR AGVS AND AMRS SOLUTIONS TAILORED TO YOUR NEEDS

BlueRoll is the Bonfiglioli platform specifically developed to respond to the demanding requirements of the AGVs and AMRs sector in terms of power density, position accuracy and high load capacity. With its **flexibility** and **full customization**, it offers a **modular solution**, that reduces complexity while ensuring **maximum power density** and **energy efficiency**.

FULL CUSTOMIZATION FOR RELIABLE PERFORMANCE AND HIGH POWER DENSITY

EXPERTISE FOR CUSTOMIZED SOLUTIONS

Active partnerships and co-engineering to satisfy a wide range of individual requirements, from design constraints to type of duty cycles

COMPLEXITY REDUCTION

The freely configurable modular solution is available in various combinations and sizes to match both design and performance requirements

SECTOR SPECIFIC REQUIREMENTS

The solution can be designed to meet specific industry sector requirements such as high / low ambient temperature, surface protection, higher IP protection, compliance with specific regulations

THE HIGHLY FLEXIBLE AND MODULAR PLATFORM FOR A WIDE SPECTRUM OF APPLICATIONS

WAREHOUSE & LOGISTICS

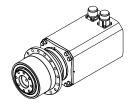
MATERIAL HANDLING

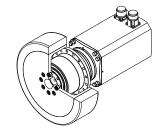
PHARMACEUTICAL

FOOD & BEVERAGE

E-COMMERCE

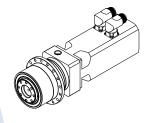
A DEDICATED SOLUTION FOR DIFFERENTS VEHICLES DESIGN

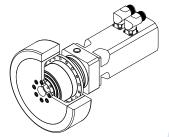

In order to satisfy the requirements of a wide range of different vehicle concepts and designs, Bonfiglioli offers a **modular approach** for AGVs and AMRs, allowing the selection of the **best configuration** to effectively suit the specific application's needs.


Based on the design of your vehicle, we can provide the **single component** (servomotor or precision planetary gearbox, with and without the wheel) **or the integrated geared motor solution**, together with a wide range of **sector-specific components and options**, tuned to the requirements of mobile robots and logistic systems.

CUSTOMIZED LEVELS OF INTEGRATION

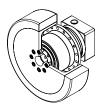
BLUEROLL COMPACT


Extra compact Servo geared motors



BLUEROLL ADVANCED

Servo geared motors



BLUEROLL BASIC

Precision Planetary Gearboxes

Each version of BlueRoll is available both with and without the wheel.

BLUEROLL BASIC

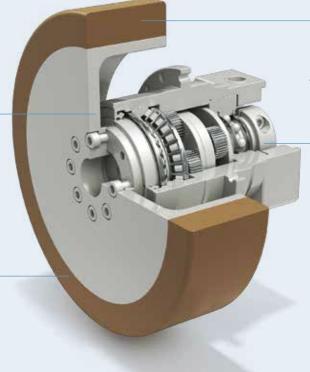
TQW: PRECISION PLANETARY GEARBOXES FOR AMRS AND AGVS

BlueRoll Basic, based on our TQW planetary gearbox, represents the ideal solution for your drive wheels.. Thanks to its **heavy load capability**, **exceptional compactness**, **efficiency** and **durability**, it fulfills application-specific requirements in an optimum way.

High energy efficiency

Compared to other technologies, planetary gearboxes allow to reduce energy consumption at any load condition, hence extending battery life.

Minimized installation space


Since the gearbox is almost completely enclosed by the wheel, the required installation space is reduced to the minimum

Easy installation

Thanks to its fixing flange design, the gearbox can be fitted directly to the chassis of the vehicle


Heavy loads capability

The integrated wheel is supported directly by the reinforced gearbox bearings, which permit ultra-high radial forces

THE TQW PRECISION PLANETARY GEARBOX SERIES

TQW is available in **three sizes**, each supporting a maximum load (per wheel) of 360, 720, 1020kg. and coupled with a specific industrial wheel, with a diameter of 160 mm, 200 mm or 250 mm. **Maximum speeds** up to 2 m/s (7.2 km/h) are possible.

GEAR RATIOS

• 9 ... 100

DEGREE OF PROTECTION

• IP65

BACKLASH

• Less than 10 arcmin

MAX RADIAL FORCE

· 2300 ... 5200 N

MAXIMUM INPUT SPEED

• 4000 ... 6000 rpm

MAXIMUM LOAD CAPACITY

· 360 ... 1020 kg

MAXIMUM SPEED

• <2m/s

POSITION PRECISION

• 0.2 ... 0.3 mm

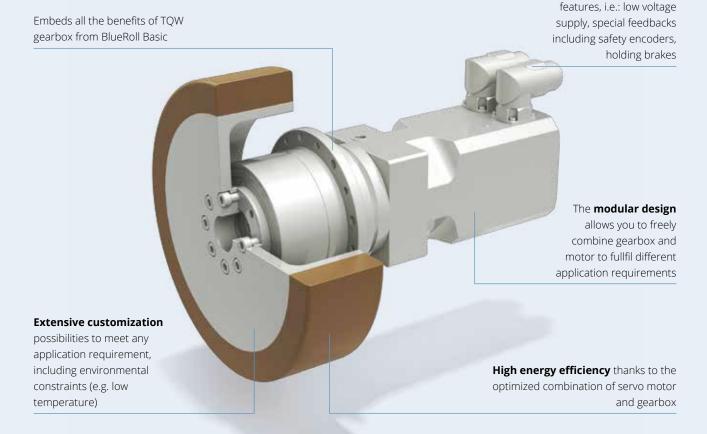
WEIGHT (WHEEL INCLUDED)

• 4,2 ... 18,1 kg

KEY FEATURES

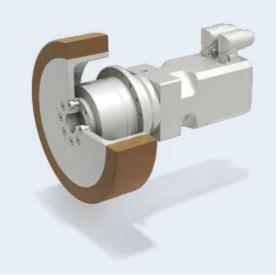
- Extremely compact
- · High energy efficiency
- Output shaft supported by heavy load capacity bearings
- Highly reliable
- · Life lubricated
- Designed for continuous and intermittence duty

NOMINAL TORQUE (Nm) TQW 060 30 TQW 070 65 TQW 090 155 MAX LOAD CAPACITY (kg) TQW 060 360 TQW 070 720 TQW 090 1,020



BLUEROLL ADVANCED

A POWERFUL AND MODULAR SOLUTION TO DRIVE ANY AGVS AND AMRS DESIGN


Thanks to the effective combination of our **Permanent Magnet Servomotors**, characterized by high torque density and compact design, and our **Precision Planetary Gearboxes** designed for high loads support, BlueRoll Advanced offers the **ideal performance for AGV applications**, ensuring great levels of flexibility, safety and space-saving.

Tailored for your mobile robot thanks to a wide range of sector-specific

PERMANENT MAGNET SERVO GEARMOTORS

The BlueRoll Advanced servomotors are permanent magnet synchronous gearmotors with highly compact dimensions and low inertia. They meet the most stringent demands for precision, dynamics and speed settings thanks to their high-quality neodymium iron boron rare-earth magnets and optimized mechatronic integration. The solution allows great freedom in the product customization, thanks to the wide range of options, for an optimized and flexible servo package.

POWER SUPPLY

 Customized winding for low voltage supply (i.e. 48Vdc)

RATED SPEED

· 1600, 3000, 4500, 6000 rpm

SIZES

- 3 gearbox sizes
- 4 motor frames

BACKLASH

• Less than 10 arcmin

BRAKE

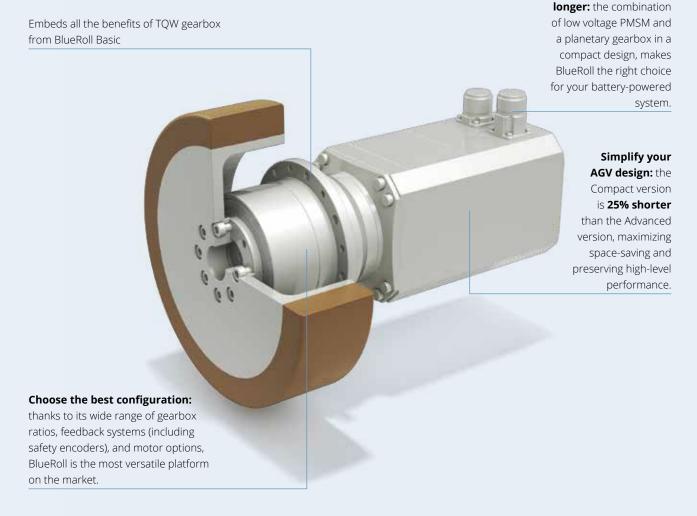
- Holding brake
- Safety brake

DEGREE OF PROTECTION

• IP 65, IP 67 possible

KEY FEATURES

- Highly customizable solution
- Specific matching between the individual application demands and the gearmotor's operating area
- Wide range of encoders and protocols suitable for functional safety
- Various connectors options or flying cable



BLUEROLL COMPACT: THE TOP-LEVEL INTEGRATION

EXTRA COMPACT SERVO GEARMOTORS

Reach the highest level of customization and compactness with our complete solution, characterized by fully tested and validated dimensioning tailored to your specific requirements. Developed to respond to customer's requests, the extreme compactness of this solution allows greater flexibility in the design of your AMR application.

Make the battery last

OTHER BONFIGLIOLI SOLUTIONS FOR AGVs

Thanks to over 40 years of experience in the sector, Bonfiglioli is the right partner to support you in **developing and designing** electric powertrain and drive **solutions for warehouse vehicles**.

Our EL Series is able to respond to the most demanding requirements of warehousing applications, ensuring **great loads capability, extreme compactness** and **high maneuverability**.

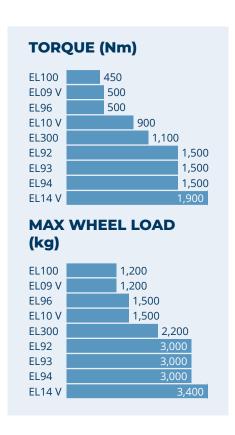
EL SERIES

Bonfiglioli EL powertrains are a perfect match for the most demanding warehousing applications (Class 2 and Class 3). Warehousing trucks require high maneuverability in tight spaces, provided by drives like the EL series drives, with the smallest operating radius in vertical arrangements.

GEAR RATIOS

• 13 ... 32

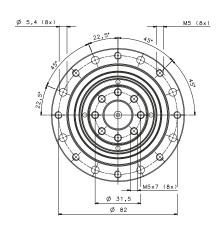
POWER RANGE

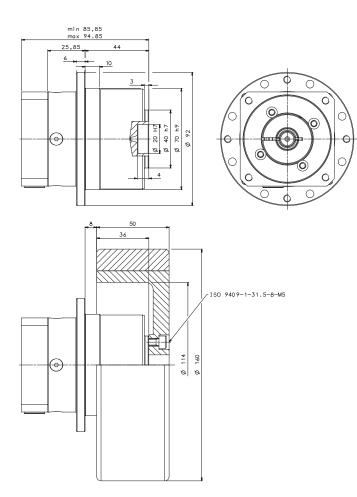

• 2 ... 7 kW

MAIN OPTIONS

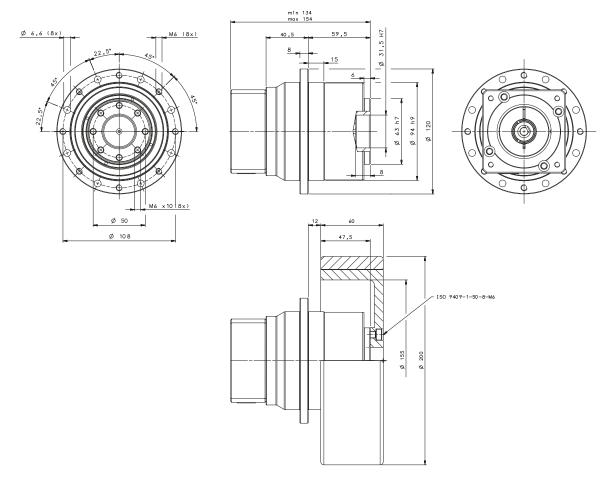
- · Cold environment versions
- Integrated tiller or castor wheel supports

KEY FEATURES


- Two-stage helical & bevel gearboxes
- Manual steer and power steer versions
- Optimized gear design for efficiency and noise
- · Integrated low-voltage electric motor
- Integrated parking brake
- · Complete system with tyres



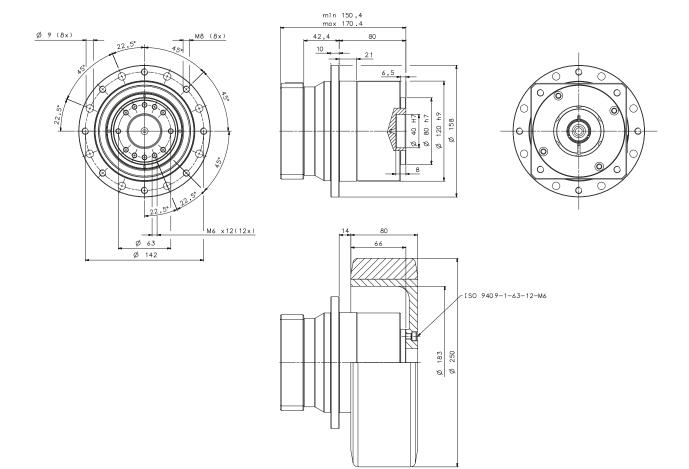
TQW 060



TOWACO		Ratio														Wheel tecnical data				
TQW 060			9	12	15	16	20	25	28	30	35	40	50	70	100	wheel techical data				
Rated output torque	\mathbf{M}_{n2}	[Nm]	29	29	29	30	30	30	30	29	30	30	30	30	18	Weight	[kg]	2,5		
Maximum acceleration output torque	M _{a2}	[Nm]	55	55	55	45	45	45	45	55	45	45	45	45	30	Mass inertia	[kgcm²]	82,8		
Emergency stop output torque ^[1]	M _{p2}	[Nm]	60	70	70	70	70	70	70	70	70	70	70	70	70	Roll resistance [4]	[%]	1		
Nominal input speed	n ₁	[min-1]	3300	3300	3300	3500	3500	3500	3700	4000	4000	4000	4000	4000	4000	Minimum Friction coefficient [5]	[-]	0,75		
Maximum momentary input speed [2]	n _{1max}	[min ⁻¹]	4000	4000	4000	5000	5000	5000	6000	6000	6000	6000	6000	6000	6000	Temperature range	[C°]	+30 / -5		
Backlash	ϕ_{R}	[arcmin]							10							Tread		Dynaroll		
Torsional stifness	C _t	[Nm/ arcmin]							6							Tread colour		Black		
Maximum radial force [3]	R _{2max}	[N]							2300							Tread Hardness		95° Shore A		
Maximum tilting moment applied to the output shaft	M _{T2max}	[Nm]		108										Rim material		S235JR				
Mass moment of inertia at motor shaft	J _g	[kgcm²]		0,06 0,21										Colour		Black				
Gearbox weight	m _g	[kg]		1,7									Corrosion protection	Standard Painting						

- [1] Permitted 1000 times during service life of the gearbox.
- [2] The speed the unit can be driven at occasionally and in non-repetitive conditions. For S5 duty cycle, it cannot be applied continuously for more than 30 seconds.
- [3] Calculated at lifetime of 20000 h output shaft speed of 100 rpm.
- [4] Roll resistance expressed in terms of additional mass percentage to the load applied and at 7,2 km/h.
- [5] Static friction coefficient on concrete.

TQW 070



TOW 070		Ratio													Wheel tecnical data			
TQW 070			9	12	15	16	20	25	28	30	35	40	50	70	100	wheel techical data		
Rated output torque	\mathbf{M}_{n2}	[Nm]	65	65	65	60	60	50	50	65	50	60	50	50	40	Weight	[kg]	4,3
Maximum acceleration output torque	M _{a2}	[Nm]	120	120	120	110	110	100	100	120	100	110	100	100	70	Mass inertia	[kgcm²]	258,9
Emergency stop output torque ^[1]	M _{p2}	[Nm]	150	160	160	160	160	160	160	150	160	160	160	160	150	Roll resistance [4]	[%]	1
Nominal input speed	n ₁	[min-1]	3500	3500	3500	3500	3500	3200	4000	4000	4000	4000	4000	4000	4000	Minimum Friction coefficient [5]	[-]	0,75
Maximum momentary input speed [2]	n _{1max}	[min ⁻¹]	3500	3500	3500	4500	4500	4500	6000	6000	6000	6000	6000	6000	6000	Temperature range	[C°]	+30 / -5
Backlash	ϕ_{R}	[arcmin]							10							Tread		Dynaroll
Torsional stifness	C _t	[Nm/ arcmin]							23							Tread colour		Black
Maximum radial force [3]	R _{2max}	[N]							4100							Tread Hardness		95° Shore A
Maximum tilting moment applied to the output shaft	M _{T2max}	[Nm]		281												Rim material		S235JR
Mass moment of inertia at motor shaft	J _g	[kgcm²]		0,36 0,81 Colour										Colour		Black		
Gearbox weight	m _g	[kg]											Corrosion protection	Standard Painting				

- [1] Permitted 1000 times during service life of the gearbox.
- [2] The speed the unit can be driven at occasionally and in non-repetitive conditions. For S5 duty cycle, it cannot be applied continuously for more than 30 seconds.
- [3] Calculated at lifetime of 20000 h output shaft speed of 100 rpm.
- [4] Roll resistance expressed in terms of additional mass percentage to the load applied and at 7,2 km/h.
- [5] Static friction coefficient on concrete.

TQW 090

TQW 090		Ratio												Wheel tecnical data				
TQW 050			9	12	15	16	20	25	28	30	35	40	50	70	100	writeer technical t	iata	
Rated output torque	\mathbf{M}_{n2}	[Nm]	155	155	155	155	155	125	125	155	125	135	125	125	100	Weight	[kg]	7,2
Maximum acceleration output torque	M _{a2}	[Nm]	280	300	300	300	300	240	240	300	240	300	240	240	160	Mass inertia	[kgcm²]	619,1
Emergency stop output torque [1]	M _{p2}	[Nm]	300	360	360	360	360	360	360	360	360	360	360	360	300	Roll resistance [4]	[%]	1
Nominal input speed	n ₁	[min-1]	3000	3000	3000	3000	3000	3000	3500	3500	3500	3500	3500	3500	3500	Minimum Friction coefficient [5]	[-]	0,75
Maximum momentary input speed [2]	n _{1max}	[min ⁻¹]	4000	4000	4000	4500	4500	4500	5000	5000	5000	5000	5000	5000	5000	Temperature range	[C°]	+30 / -5
Backlash	ϕ_{R}	[arcmin]							10							Tread		Dynaroll
Torsional stifness	C _t	[Nm/ arcmin]							50							Tread colour		Black
Maximum radial force [3]	R_{2max}	[N]							5200							Tread Hardness		95° Shore A
Maximum tilting moment applied to the output shaft ^[3]	M _{T2max}	[Nm]							403							Rim material		S235JR
Mass moment of inertia at motor shaft	J _g	[kgcm²]		0,47 3,05 Co									Colour		Black			
Gearbox weight	m _g	[kg]		10,9 Corrosion protection											Standard Painting			

- [1] Permitted 1000 times during service life of the gearbox.
- [2] The speed the unit can be driven at occasionally and in non-repetitive conditions. For S5 duty cycle, it cannot be applied continuously for more than 30 seconds.
- [3] Calculated at lifetime of 20000 h output shaft speed of 100 rpm.
- [4] Roll resistance expressed in terms of additional mass percentage to the load applied and at 7,2 km/h.
- [5] Static friction coefficient on concrete.

BLUEROLL ADVANCED

PERMANENT MAGNET SERVOMOTORS

				BMD 65							E	BMD 8	2	ВМЕ	102	BMD 118				
Standstill torque		M _o	[Nm]		0,	85			1,	70			2,20		3,	20	4,40	4,	00	5,60
Rated torque		M _n	[Nm]	0,83	0,80	0,76	0,73	1,65	1,60	1,52	1,45	2,12	2,05	1,95	3,15	3,00	4,20	3,70	3,40	5,50
Rated speed		n	[min ⁻¹]	1600	3000	4500	6000	1600	3000	4500	6000	1600	3000	4500	1600	3000	1600	1600	3000	1600
Rated frequency		f _n	[Hz]	107	200	300	400	107	200	300	400	107	200	300	107	200	107	107	200	107
Rated power		P _n	[kW]	0,14	0,25	0,36	0,46	0,28	0,50	0,72	0,91	0,36	0,64	0,92	0,53	0,94	0,70	0,62	1,01	0,92
Max torque		M _{max}	[Nm]		2,	55			4,	90		6,20			8,50		11,5	11,0		15,0
Number of poles	r of poles 2p		[-]		8	3			8	3		8			8		8		3	8
Motor moment of inertia	nent of inertia J [kg		[kg cm²]		0	,2			0	,4		0,6			1,4		1,7	1,9		4,5
Electric time constant		τ _{el} [ms]				3			3	3		3			5,7		5,7	8,4		13
Thermal time constant		$\boldsymbol{\tau}_{\text{therm}}$	[min]		4			2	0		26			26		33	25		28	
Motor mass without bake/ flywheel		m _M	[kg]		1	,3			1,	,9		2,6			3	,5	4,6	4,2		7,7
Rated voltage		V _n	[V _{AC}]	31	30	32	32	31	30	31	31	31	31	31	31	32	30	31	32	31
Stall RMS current		I _o	[A]	4,04	6,85	9,20	12,0	7,8	13,0	18,0	23,5	10,3	16,6	24,1	15,9	24,8	22,5	19,1	30,0	24,0
Rated RMS current		l _n	[A]	3,89	6,46	8,30	10,5	7,75	12,8	17,0	21,0	9,98	15,6	21,2	15,0	23,7	21,1	16,4	26,6	21,7
Max RMS current	Vdc	l _{max}	[A]	13,1	21,7	29,6	38,5	26,7	44,4	61,0	79,5	32,7	52,8	76,0	52,7	85,3	66,8	58,5	96,3	78,7
Back EMF constant phase- phase	48 \	K _e	$\left[\frac{\text{mV}}{\text{min}^{-1}}\right]$	14,3	8,44	6,29	4,80	14,4	8,64	6,22	4,80	14,9	9,26	6,45	14,5	8,91	13,7	14,9	9,13	16,1
Torque constant		K _T	[Nm/A]	0,21	0,12	0,09	0,07	0,22	0,13	0,09	0,07	0,21	0,13	0,09	0,20	0,13	0,20	0,21	0,13	0,23
Stator phase-phase resistance at 20°C		R _{pp}	[Ω _{20°}]	1,76	0,62	0,34	0,20	0,79	0,28	0,15	0,09	0,51	0,20	0,09	0,28	0,11	0,15	0,21	0,08	0,12
Stator phase-phase inductance		L _{pp}	[mH]	5,26	1,85	1,02	0,60	2,39	0,86	0,45	0,26	1,56	0,60	0,29	1,59	0,60	0,84	1,78	0,67	1,60

OUR GLOBAL PRESENCE

Thanks to an international network of closely interconnected commercial and production sites, we can guarantee the same high standards of Bonfiglioli quality anywhere at any given time. We know that our direct presence in local markets is the key to long-lasting success, so our family includes 20 production sites, 26 commercial sites and more than 550 distributors around the world.

Our organization is always close by, offering complete and efficient solutions and supporting our customers with dedicated services, co-engineering and after-sales assistance.

20PRODUCTION SITES

26
COMMERCIAL SITES

AUSTRALIA

Bonfiglioli Transmission (Aust.) Pty Ltd

2, Cox Place Glendenning NSW 2761 Locked Bag 1000 Plumpton NSW 2761 Tel. +61 2 8811 8000

BRAZIL

Bonfiglioli Redutores do Brasil Ltda

Av. Osvaldo Fregonezi, 171, cjs 31 e 44 CEP 09851-015 - São Bernardo do Campo São Paulo

Tel. +55 11 4344 2322

CHINA

Bonfiglioli Drives (Shanghai) Co. Ltd.

#68, Hui-Lian Road, QingPu District, 201707 Shanghai Tel. +86 21 6700 2000

Motion & Robotics #568, Longpan Road, Jiading District, 201707 Shanghai

Bonfiglioli Trading (Shanghai) Co. Ltd.

Room 423, 4th Floor, #38, Yinglun Road, China (Shanghai) Pilot Free Trade Zone, Shanghai

Selcom Electronics (Shanghai) Co., Ltd

A7, No.5399, Waiqingsong Road, QingPu District, 201707 Shanghai

Tel. +86 21 6010 8100

A24, No.5399, Waiqingsong Road, QingPu District, 201707 Shanghai

Tel. +86 21 6010 8100

FRANCE

Bonfiglioli Transmission S.A.S.

14 Rue Eugène Pottier Zone Industrielle de Moimont II 95670 Marly la Ville Tel. +33 1 34474510

GERMANY

Bonfiglioli Deutschland GmbH

Sperberweg 12 - 41468 Neuss Tel. +49 0 2131 2988 0

Bonfiglioli Vectron GmbH

Europark Fichtenhain B6 - 47807 Krefeld Tel. +49 0 2151 8396 0

O&K Antriebstechnik GmbH

Ruhrallee 8-12 - 45525 Hattingen Tel. +49 0 2324 2050 1

INDIA

Bonfiglioli Transmission Pvt. Ltd.

Mobility & Wind Industries AC 7 - AC 11 Sidco Industrial Estate Thirumudivakkam Chennai - 600 044 Tel. +91 844 844 8649

Discrete Manufacturing &

Process Industries - Motion & Robotics Survey No. 528/1,

Perambakkam High Road Mannur Village, Sriperumbudur Taluk Chennai - 602 105 Tel. +91 844 844 8649

Discrete Manufacturing & Process Industries

Plot No.A-9/5, Phase IV MIDC Chakan, Village Nighoje Pune - 410 501 Tel. +91 844 844 8649

ITALY

Bonfiglioli Riduttori S.p.A.

Discrete Manufacturing & Process Industries
Via Cav. Clementino Bonfiglioli, 1
40012 Calderara di Reno
Tel. +39 051 6473111

Discrete Manufacturing &

Process Industries Via Sandro Pertini, lotto 7b 20080 Carpiano Tel. +39 02985081

Discrete Manufacturing & Process Industries

Via Saliceto, 15 - 40010 Bentivoglio

Mobility & Wind Industries

Via Enrico Mattei, 12 Z.I. Villa Selva 47122 Forlì

Tel. +39 0543 789111

Motion & Robotics

Via Unione, 49 - 38068 Rovereto Tel. +39 0464 443435/36

Selcom Group S.p.A.

Via Achille Grandi, 5 40013 Castel Maggiore (BO) Tel. +39 051 6387111

Via Marino Serenari, 18 40013 Castel Maggiore (BO) Tel. +39 051 6387111

Via Cadriano, 19 40057 Cadriano (BO) Tel. +39 051 6387111

NEW ZEALAND

Bonfiglioli Transmission (Aust.) Pty Ltd

88 Hastie Avenue, Mangere Bridge, 2022 Auckland PO Box 11795, Ellerslie Tel. +64 09 634 6441

SINGAPORE

Bonfiglioli South East Asia Pte Ltd

8 Boon Lay Way, #04-09, 8@ Tadehub 21, Singapore 609964 Tel. +65 6268 9869

SLOVAKIA

Bonfiglioli Slovakia s.r.o.

Robotnícka 2129 Považská Bystrica, 01701 Slovakia Tel. +421 42 430 75 64

SOUTH AFRICA

Bonfiglioli South Africa Pty Ltd.

55 Galaxy Avenue, Linbro Business Park, Sandton, Johannesburg 2090 South Africa Tel. +27 11 608 2030

SPAIN

Tecnotrans Bonfiglioli S.A

Avinguda del Ferrocarril, nº 14, Polígono Industrial Can Estapé 08755 Castellbisbal - Barcelona Tel. +34 93 447 84 00

TURKEY

Bonfiglioli Turkey Jsc

Atatürk Organize Sanayi Bölgesi, 10007 Sk. No. 30 Atatürk Organize Sanayi Bölgesi, 35620 Çiğli - Izmir Tel. +90 0 232 328 22 77

UNITED KINGDOM

Bonfiglioli UK Ltd.

Unit 1 Calver Quay, Calver Road, Winwick Warrington, Cheshire - WA2 8UD Tel. +44 1925 852667

USA

Bonfiglioli USA Inc.

3541 Hargrave Drive Hebron, Kentucky 41048 Tel. +1 859 334 3333

VIETNAM

Bonfiglioli Vietnam Ltd.

Lot C-9D-CN My Phuoc Industrial Park 3 Ben Cat - Binh Duong Province Tel. +84 650 3577411

We have a relentless commitment to excellence, innovation & sustainability. Our team creates, distributes and services world-class power transmission & drive solutions to keep the world in motion.

HEADQUARTERS

Bonfiglioli S.p.A Via Cav. Clementino Bonfiglioli, 1 40012 Calderara di Reno - Bologna (Italy) Tel. +39 051 6473111

